
Last modified: 26 August 1991

The Features of the
Object-oriented Abstract Type Hierarchy (OATH)

Brian M. Kennedy
bmk@csc.ti.com

Computer Systems Laboratory
Computer Science Center

Texas Instruments

Copyright 1991 Texas Instruments

ABSTRACT

The Object-oriented Abstract Type Hierarchy (OATH) instantiates an approach to C++ class hierarchy

design that exploits subtyping polymorphism, provides greater implementation independence, and supports

implicit memory management of its objects. The primary design goal of OATH was to provide an abstract

type hierarchy that is consistent with the concepts being modelled by utilizing a strict subtyping approach

to hierarchy design. This approach increases the polymorphism and implementation independence of code

that uses OATH. The second major design goal was to provide robust garbage collection of OATH objects,

fully implemented within a portable C++ class library. OATH is implemented via parallel hierarchies of

internal types and "accessors". Although similar to the infamous "smart pointers", OATH accessors do not

suffer many of the same problems. In particular, OATH accessors never release "dumb pointers" to the

environment and fully support hierarchical argument matching. OATH accessors also offer the opportunity

to "leaf" implementation classes to bypass the virtual mechanism for efficiency, when generality is not

needed.

The Object-oriented Abstract Type Hierarchy

(OATH) instantiates an approach to C++ class

hierarchy design that exploits subtyping

polymorphism, provides greater implementation

independence, and supports implicit memory

management of its objects. Although the core OATH

library provides numerous basic types and data

structures, it is the features of the hierarchy design

that are most valuable to the user and developer of

application-specific OATH classes. These features

and their implementation are the focus of this paper.

Throughout this paper, numeric types and basic

container types are used as examples. These types

have the advantage that they are simple and well-

understood, so no prior explanation must be offered.

However, the benefits provided by OATH, and by

object-oriented programming in general, are only

fully realized when applied to more complex (usually

application-specific) problems.

1 THE FEATURES OF OATH

The primary design goal of OATH was to

provide an abstract type hierarchy that is consistent

with the concepts being modelled by utilizing a strict

subtyping approach to hierarchy design. This

approach increases the polymorphism and

implementation independence of code that uses

OATH.

The second major design goal was to provide

robust garbage collection of OATH objects, fully

implemented within a portable C++ class library.

Explicit management of dynamic memory in C++ is a

burdensome and error-prone task. C++, unlike

CLOS and Smalltalk, does not force the overhead of

The Features of OATH 2

Last modified: 26 August 1991

garbage collection on all programs (many of which

do not need it); however, C++ does provide

sufficient functionality that garbage collection can be

provided in a library, so that applications that need it

can have it.

OATH also provides heterogeneous container

classes. Heterogeneous containers are more general

and flexible than homogeneous containers, and often

more natural to use. Such generality, however,

requires the ability to determine the type of an object

after it is removed from a container.

In C++, heterogeneity is often obtained via

void*, which can point to any type and can later be

cast to the appropriate type. However, such casts

essentially abort the C++ type system and are thus

very error-prone. The programmer must enforce

some policy to ensure that objects are cast to an

appropriate type.

OATH provides dynamic type determination in

the form of “safe casts”. A “safe cast” from an

OATH type to a more derived type returns the object

if it is truly of the derived type, or Nil if it is not. Nil

is also a useful feature on its own. Nil can be

assigned to an accessor of any type, but is itself a

“non-object”. Nil is similar in concept to the null

pointer in C++.

2 SUBTYPING

The OATH hierarchy was designed to reflect

the subtyping relationships between the types that it

represents. The use of C++ inheritance for

subtyping was strictly separated from implementation

and code reuse. This approach to hierarchy design

provides greater implementation independence, for

both code inside the library and code that uses the

library. The hierarchy also allows greater

exploitation of subtyping polymorphism.

2 . 1 Subtyping v. Code Reuse

C++ classes are used to define both an abstract

type (the functionality of an object) and an object

implementation (the internal structure of an object).

Similarly, inheritance in C++ is used for both

subtyping (inheriting functionality) and code reuse

(inheriting implementation). Although these two

features are provided in C++ with the same

mechanism, they are distinctly different concepts

[Amer90].

Code reuse is a powerful feature of C++;

however, it is a poor basis for object-oriented

design. A type hierarchy should be designed to

reflect the behavior of the objects being modelled. It

should not be designed to reflect the most convenient

computer representation of the objects.

For example, consider rational and

integer, common multi-precision numeric types.

Many class libraries have been proposed and/or

implemented (e.g. Smalltalk [Gold83], NIH OOPS

[Gorl87], libg++ [Lea88]) that define rational as

a sibling class of integer implemented as a pair of

integers. Such a definition is simple, exploiting

well the power of code reuse via composition.

Unfortunately, this definition does not correspond to

the mathematical concepts being modelled.

Mathematically, all integers are rational numbers --

integer is a subtype of rational. Similarly, all rational

numbers are real numbers, and all real numbers are

complex -- rational should be a subtype of real which

should be a subtype of complex.

The Features of OATH 3

Last modified: 26 August 1991

o b j

t o k e n

s t r i n g T o k e ncharacter

b a gp o s

queue

s e q

l i foQueue fifoQueue

pdList

deq

l i s t

dlList

s t r i n g

minString

pdPos

l i s t P o s t a b l e

c o m p l e x

s t r i n g T a b l edlPos

s t r i n g P o s

minStringPos

real

ra t iona l

i n t e g e r

capsule<T>

r i n g

grid

s e t

bigInteger

bigRational

bigReal

bigComplex

longRational

longInteger

doubleReal

doubleComplex

charac terSe t

p l i s t < T >

f i n i t e S e t

hashSet l o c a l T o k e n

Figure 1. Part of the Object-oriented Abstract Type Hierarchy

The primary goal of OATH is to provide a

meaningful abstract type hierarchy: a hierarchy of

behavioral specifications that correspond to the

concepts being modelled (see Figure 1). Given a

consistent abstract type hierarchy, implementation

classes (in italics in Figure 1) can be added at the

leaves of the hierarchy to implement the behavior of

the abstract types (in bold). Code reuse can be

exploited at this phase, but should not enter into the

design of the abstract type hierarchy.

For instance, in OATH integer is derived

from rational, which is derived from real,

which is derived from complex. These are all

abstract types. The type integer can be

implemented in more than one way. The

implementation type bigInteger is multiple-

precision, whereas longInteger is implemented

as a long. Similarly, rational can have several

implementations: bigRational is a pair of

bigIntegers and longRational is a pair of

longs. Note that code reuse via composition was

exploited without affecting the abstract type

hierarchy.

In addition to the conceptual consistency of the

hierarchy, this subtyping approach to hierarchy

design clearly separates the implementations from the

behavioral specifications. This simplifies code

maintenance, allows alternate implementations to be

added later, and provides a level of implementation

independence in code that uses the library. For

example, a user of integer need not know the

implementation. It may be implemented as a long,

as two longs, as an array of longs, or as a linked-

list of longs. Furthermore, another implementation

of integer may be added later without rewriting the

hierarchy or the code that uses the hierarchy.

2 . 2 Subtyping Polymorphism

This hierarchy design also provides a great deal

of subtyping polymorphism. For example, any code

The Features of OATH 4

Last modified: 26 August 1991

written using complex numbers will work with

reals, rationals, and integers. Similarly,

any code written using bags will also work with

queues, lists, and strings.

For example, consider the common tree search

algorithm which records in a structure all possible

paths (decisions), and then chooses one. Later it

may return to the structure in order to try an alternate

path. Separate algorithms could be coded for

breadth-first, depth-first, and prioritized searches.

In contrast, a single search algorithm could be

coded which is polymorphic on the alternate path

structure. A queue has sufficient functionality

(insertion and extraction) to implement the search

algorithm, without knowing exactly what queueing

paradigm is used. If this algorithm is passed a

lifoQueue (last-in first-out queue, or stack), then

it will perform a depth-first search. If it is passed a

fifoQueue, (first-in first-out queue), then it will

perform a breadth-first search. If it is passed a

prioritized queue, then it will perform a prioritized

search.

2 . 3 Subtyping Domain

For bags (OATH container classes), there are

two forms of subtyping: increasing functionality and

restricting domain. For instance, the OATH

string is a subtype of list that can contain only

characters. It also has additional functionality,

such as <, <=, >, >=, uppercase, lowercase, and

hash, which make sense because of string 's

restricted domain.

Bag and its descendants were designed to

allow this restriction of domain, or filtering. Any

object may be inserted into a bag ; however,

depending upon the subtype of that bag, the object

may fall through (conceptually as if the bag were a

sieve or filter).

This ability to subtype domain can be used to

increase polymorphism. For instance, returning to

the search algorithm above, a filtering lifoQueue

could be passed to the algorithm in order to

completely ignore paths that were undesirable. In

this way, a completely different search can be made

with the same search algorithm.

Although OATH bags were designed to

support applications that need heterogeneous

containers, there are many applications that do not

need heterogeneity. Homogeneous containers

provide simplicity of expression, increased type

safety, and execution efficiency. Homogeneous

class implementations can be conveniently provided

as subtypes of their heterogeneous counterparts via

parameterized types. For instance,

plist<complex> may be an implementation of

list that holds only complex numbers. (Note:

this is conceptual -- parameterized types have not yet

been used with OATH).

2 . 4 Subtyping and Execution

This subtyping approach to hierarchy design

can effect execution efficiency. Since most

functionality is defined as virtual functions, separate

from the implementations, out-of-line virtual calls are

common when utilizing the generality of the abstract

classes. However, the design of the OATH

accessors (described below) allows the definition of

"leaf" implementations that allow more efficient

execution by bypassing the virtual mechanism.

3 OATH ACCESSORS

Users of OATH do not access the objects

directly; OATH objects can only be accessed through

OATH "accessors". For each OATH type there is a

corresponding accessor class. The accessors can be

initialized and assigned OATH objects to access

(analogous to C++ pointers). However, any other

operation on an accessor is applied directly to the

abstract object that it accesses (analogous to C++

references). Thus, accessors can be used as if they

were the objects themselves, but assigned and passed

as function parameters as if they were pointers.

Since the OATH accessor lies between pointers

and references, a new but similar syntax would be

The Features of OATH 5

Last modified: 26 August 1991

nice. For instance, "@" could be used instead of "*"

or "&":

list@ L;

However, OATH is intended to be a C++ library, not

a new language. So, the OATH accessor types are

suffixed with a capital letter "A":

listA L;

Analogous to pointers, constructing a listA

constructs only an accessor, not the list itself. In the

declaration above, L is initialized to Nil. Given an

existing listA K, then L could be initialized to

access the same list object that K accesses:

listA L = K;

Note that both K and L access the same list. To make

a new OATH object, a "make" function must be

called. For instance, to initialize L to access a copy

of the list accessed by K, the function makeCopy

can be used:

listA L = K.makeCopy();

To make an object from scratch, an implementation

type must be chosen and its "make" function, a static

member of the accessor class, must be called. For

instance,

listA L = dlListA::make();

makes an empty dlList (doubly-linked list) and

assigns it to the list accessor L.

In addition to static "make" functions, the

accessor types also have a static member function

isa, which is the OATH "safe cast". For instance,

given a bagA B,

listA L = listA::isa(B);

attempts to "safe cast" B to a list and assign it to L.

If B is not really a list, then isa(B) will return Nil.

3 . 1 Parallel Hierarchies

OATH is implemented as two parallel

hierarchies: the accessor type hierarchy and the

internal type hierarchy. The internal types contain

the object representation (the data members) and the

virtual functions. The accessor types contain all of

the externally accessible functions of the abstract

types. These functions often do little more than call

the appropriate virtual function(s) in the internals

hierarchy. The accessors have a single data member,

a pointer to an object in the internals hierarchy.

Thus, accessors are one-word structures which can

be held and passed in registers, and otherwise

optimized like the built-in pointer types.

Efficient use of the accessors is natural. For

instance, there is no significant cost in passing or

returning accessors by value. Further, construction

and destruction is equivalent in cost to re-

assignment, so placing an accessor in a loop does not

have hidden overhead.
stringPosA P = S.makePos();
for(; P(); ++P)
 {characterA C = *P;
 // do something with C
 }

Unlike many multi-word C++ classes, there is no

extra cost in placing the characterA declaration

within the for-loop (where it belongs). Thus, code

can be written fairly naturally with accessors without

incurring unforeseen inefficiencies.

3 . 2 Accessors v. Smart Pointers

OATH accessors are similar in concept to smart

pointers, which have been proposed [Stro87] and

implemented [Wang89][Edel90] many times before.

However, OATH accessors offer some significant

advantages over smart pointers.

First and foremost, OATH accessors never

release "dumb" pointers outside of their member

functions. This will have important consequences on

garbage collection when compiled with C++

compilers that destruct temporary objects as soon as

possible (as permitted by the current draft standard

and [Elli90]).

Smart pointers overload operator -> to return a

dumb pointer to its "internal" object. Such a

definition is convenient, since it makes all members

of the internal object immediately available through

the smart pointer. However, this definition is

problematic. Consider,

O2 = O1->makeCopy()->transform();

The Features of OATH 6

Last modified: 26 August 1991

The desire is to set O2 to a transformed copy of O1.

O1-> returns a dumb pointer which is used as this

for the member function makeCopy() . The

member function makeCopy() returns a smart

pointer to a new object that is a copy of O1. The

compiler will create a temporary object to hold that

smart pointer. The operator -> applied to the

temporary yields a dumb pointer to the new copy. At

this point, prior to the call to the call of

transform() , the compiler can destruct the

temporary that holds the smart pointer. It can do this

because it no longer needs the smart pointer once it

has obtained the dumb pointer returned from operator

->. Since the temporary was the only smart pointer

referencing the new copy, that copy may be collected

(destruction of the smart pointer may cause its

immediate destruction, or the invocation of

transform() could cause a garbage collection).

(Note that many current C++ compilers keep

temporary objects alive past the end of the

expression, so the above has not been a problem.

Future compiler implementations will probably not.)

In contrast, OATH accessors define the type

interface. So, a member function invocation on a

temporary OATH accessor invokes a member

function of that object, thereby guaranteeing that the

temporary will exist until the end of the function. All

uses of "dumb" pointers to internal OATH objects

are dynamically within a call to an OATH accessor

member function.

OATH accessors also offer the advantage of

reference semantics, which makes their use much

more natural in the presence of overloaded operators.

Finally, since OATH accessors are defined in a

parallel hierarchy, they can be assigned and passed

as arguments to overloaded functions naturally,

obeying the implicit conversion preferences of the

inheritance hierarchy. Definition of user-defined

conversion operators are often necessary with smart

pointers: preference based upon depth in the

hierarchy is not considered when user-defined

conversions are invoked.

3 . 3 Accessors and Execution

The parallel hierarchy structure of OATH

allows an implementation type to be defined as a

"leaf", such that when it is used directly it bypasses

the virtual mechanism. Whether or not to define an

implementation class as a leaf is a direct trade-off

between execution efficiency and reusability via

derivation.

For instance, it may be desirable to have an

efficient multiple-precision integer class, bigInteger.

The following expression with general OATH

integers,

I1 += I2 * I3;

would require two virtual function invocations. To

prevent this for the leaf class bigInteger, the accessor

class bigIntegerA redefines operators += and *

to call the internal function directly, bypassing the

virtual mechanism, by using a scoped function call.

If both the internal functions and the accessor

functions are inline, then the whole expression can

be coded inline when bigIntegerAs are used:
bigIntegerA BI1, BI2, BI3;
// code here
BI1 += BI2 * BI3; //no virtual

Thus, bigInteger can be used as an implementation of

integer, rational, real, and complex via the general

virtual mechanism in code that needs generality.

Alternately, for code that needs efficiency, bigInteger

can be used specifically and the virtual functions can

be bypassed. The disadvantage of defining an

implementation class as a leaf is that it cannot be

easily reused via derivation.

4 LIBRARY-BASED GC

Explicit management of objects allocated in

freestore is notoriously error-prone and generally

completely disjoint from the algorithm that is being

coded. One of the major features of OATH is a

library-based garbage collection mechanism for

OATH objects. This mechanism is a hybrid

reference counting and marking algorithm capable of

collecting all garbage (including circular references).

The Features of OATH 7

Last modified: 26 August 1991

4 . 1 Reference Counting

The internal representations of OATH objects

are always allocated in freestore and always accessed

via OATH accessors. Thus, it is simple to maintain

accurate reference counts [Knut73] on OATH

objects. When an accessor is assigned an OATH

object, it increments the reference count of the object

being assigned, and it decrements the reference count

of the object that it previously accessed.

Construction and destruction increment and

decrement the reference count, respectively.

4 . 2 Modes

The programmer can select one of four garbage

collection modes at compile-time: no GC,

incremental GC, stop-and-collect, or combined. No

GC mode eliminates the overhead associated with

garbage collection. This mode is suitable for short-

lived programs and programs that make few objects

during execution.

Incremental GC mode maintains reference

counts on the objects. If a reference count is zero

after being decremented, then the object is deleted.

This mode is more convenient than stop-and-collect,

since the programmer need not decide when to

invoke garbage collection. However, circularly-

referenced garbage will not be collected. This mode

is probably best suited for programs that do not

produce circular references or do not live long

enough that the lost storage will matter.

Stop-and-collect mode will maintain reference

counts, but will only collect when the programmer

calls the function:

 objA::collectGarbage(int)

The int parameter specifies "quick" collection or

"full" collection. Full collection will collect

circularly-referenced garbage, but can be

significantly more time consuming. An extra word

of storage per object is used in stop-and-collect

mode. This mode is typically preferred for programs

that produce circular references, but do not overflow

from physical memory into virtual memory.

The combined GC mode collects incrementally

and collectGarbage() can be invoked to collect

circularly-referenced garbage. However, this mode

requires two extra words of storage per object. This

is the best mode for programs that are long-lived or

utilize virtual memory.

In stop-and-collect and combined modes, all

OATH objects are linked together so that they can be

traversed by collectGarbage(). The extra

storage required by these two modes is due to the

links. In stop-and-collect mode, the objects are

singly-linked (hence, one extra word per object). To

facilitate incremental collection in combined mode,

the objects are doubly-linked (hence, two extra

words per object).

4 . 3 Collecting Circular References

Reference counting is an efficient and robust

way to implement library-based garbage collection.

However, circularly-referenced garbage cannot be

collected from reference counting alone.

Traditional two-pass marking garbage

collectors maintain a set of root pointers. Any object

that is unreachable from the set of root pointers is

garbage. To identify all garbage, the first pass starts

from each root pointer and marks all objects that can

be reached. The second pass over the objects simply

collects all unmarked objects.

OATH accessors can be split into two groups,

"internal accessors" and "root accessors". Internal

accessors are accessors that are held by OATH

objects -- these are the accessors that cause circular

references. Root accessors are accessor objects held

by the application, on the stack, in static storage, or

as members of non-OATH objects. For the two-pass

marking algorithm above, the set of root pointers

would be the root accessors. Maintaining a record of

the root accessors, excluding internal accessors,

would be difficult, making use of accessors very

expensive. In contrast, OATH uses a three-pass

The Features of OATH 8

Last modified: 26 August 1991

algorithm which requires only the reference counts

([Chri84] proposes a similar five-step algorithm).

At the beginning of the first pass, the reference

counts include references due to both root and

internal accessors. During the first pass, the virtual

function clearReferences() is called on each

object. This function clears the mark (a one-bit flag

in each object) and then calls deref(), which

decrements the reference count, on each object that it

references. At the end of this first pass, all reference

counts due to internal accessors have been removed.

The reference counts that remain are due to root

accessors.

The second pass calls the virtual function

setReferences() on each object that has a non-

zero reference count (is referenced by a root

accessor) and is not marked (has already been

visited). The function sets the mark flag and then

calls ref(), which increments the reference count,

and, if unmarked, setReferences() on each

object that it references. At the end of the second

pass, all reference counts due to internal accessors

that are reachable from root accessors have been

restored. The reference counts of circularly-

referenced garbage will remain zero. A final pass is

then made to delete each object with reference count

equal to zero.

This three-pass marking algorithm is clearly

more expensive than the traditional two-pass

algorithm; however, it is the same order of

complexity. Furthermore, this cost is only incurred

by programs that need to collect circularly-referenced

garbage. Incremental collection, which is quite

efficient, will be sufficient for most programs.

AVAILABILITY

The current release of the experimental OATH

library is available via anonymous ftp from site

csc.ti.com (192.94.94.1) in the file pub/oath.tar.Z.

Comments and further research on this library is

encouraged. Please send questions and comments to

oath@csc.ti.com.

ACKNOWLEDGEMENT

OATH is a result of many long, often heated,

discussions with Larry Spry, whose insights and

experience proved quite valuable.

REFERENCES
[Amer90] P. America and F. van der Linden, A parallel

object-oriented language with inheritance and

subtyping, ECOOP/OOPSLA '90 Proceedings,

21-25 Oct 1990, p. 161-168.

[Chri84] T. W. Christopher, Reference count garbage

collection, Software -- Practice and Experience,

14(6), p. 503-507, June 1984.

[Edel90] D. R. Edelson, Dynamic Storage Reclamation in

C++, Master's Thesis, University of California

at Santa Cruz, UCSC-CRL-90-19, June 1990.

[Elli90] M. Ellis and B. Stroustrup, The Annotated C++

Reference Manual, Addison-Wesley, 1990.

[Gold83] A. Goldberg and D. Robson, Smalltalk-80 The

Language and its Implementation, Addison-

Wesley, 1983.

[Gorl87] K. E. Gorlen, An object-oriented class library for

C++ programs, Software -- Practice and

Experience, v17(12), Dec 1987, p. 899-922.

[Kenn91] B. M. Kennedy, The features of the Object-

oriented Abstract Type Hierarchy (OATH), 1991

USENIX C++ Conference, p. 41-50.

[Knut73] D. E. Knuth, The Art of Computer

Programming, Volume 1: Fundamental

Algorithms, Addison-Wesley, 1973.

[Lea88] D. Lea, libg++, the GNU C++ library, USENIX

C++ Conference, 1988, p. 243-256.

[Stro87] B. Stroustrup, Possible directions for C++,

USENIX C++ Workshop, 1987, p. 399-416.

[Wang89] T. Wang, The "MM" Garbage Collector for

C++, Master's Thesis, California Polytechnic

State University, 1989.

